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ESTIMATION OF DELAYS AND OTHER PARAMETERS IN
NONLINEAR FUNCTIONAL DIFFERENTIAL EQUATIONS

H. T. Banks and P. L. Daniel

ABSTRACT

We discuss a spline-based approximation scheme for nonlinear nonautonomous

delay differential equations. Convergence results (using dissipative type

estimates on the underlying nonlinear operators) are given in the context of

parameter estimation problems which include estimation of multiple delays and

initial data as well as the usual coefficient-type parameters. A brief summary

of some of our related numerical findings is also given.
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91 Introduction

In [6] spline approximation ideas are developed in the context of numerical

algorithms for solution of functional differential equations (FDE). The

theoretical framework is based on a functional analytic formulation (in an

appropriately chosen Hilbert space Z) of Ritz-Galerkin type ideas where one

approximates on finite-dimensional subspaces ZN the underlying linear solution

semigroup T(t) (with infinitesimal generator A) for the FDE by linear semigroups

N N N N N
TN(t) (with infinitesimal generators A = P AP , where P is the orthogonal

N
projection of Z onto Z ). These ideas were subsequently ([3], [4]) used in

developing numerical schemes for parameter estimation and optimal control

problems. The fundamental theoretical tool employed is the Irotter-Kato theorem

(a functional analytic formulation of the Lax equivalence theorem: stability

plus consistency yields convergence of approximation schemes) for linear semi-

groups. In this paper we present approximation results that subsume those in

[6], [3], and [4] in that we develop schemes to estimate parameters that include

multiple delays, coefficients and initial data for nonlinear nonautonomous FDE.

Our theoretical arguments avoid the Trotter-Kato linear semigroup formulation

altogether. Rather, we combine dissipative type estimates with use of the

Gronwall inequality to develop a theory that not only allows for rather general

nonlinearities but also accomodates with ease nonautonomous systems (both of

which are features that the Trotter-Kato linear semigroup framework excludes).

Of course, one could use an evolution operator analogue of the Trotter-Kato

approximation theorem to obtain results for linear nonautonomous equations

(see [7) for details), or a nonlinear Trotter-Kato type theorem for nonlinear

autonomous FDE (see [13], [14]). Both of these separate approaches however

are less direct than the one developed here when applied to parameter estimation

problems.
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While the approximation methods we develop can be used with great success

to simply solve initial value problems for nonlinear nonautonomous FDE, the

main focus of our treatment here is parameter identification or estimation.

That our ideas can also be fruitfully employed in control problems is demonstrated

in [9], [10] while application of the methods to estimation problems for certain

partial differential equations can be found in [5].

The fundamental ideas (which were first presented for simple nonlinear

autonomous, known delay, estimation problems in [1] and subsequently extended

to treat nonautonomous, unknown delay, FDE problems in [10)) are really quite

simple. However, the development of a theory for identification of the delays

is a delicate matter since the "history space" for the delay system changes as

one iteratively estimates the delays. This, unfortunately, results in a rather

complicated presentation from the standpoint of technical notation regardless

of the approach (e. g., see treatment of the linear autonomous system case in [4]).

Our presentation is as follows: In section 2 we describe a parameter

estimation problem for FDE's and give an equivalent Hilbert space formulation

involving an abstract nonlinear evolution equation. Section 3 contains a

discussion of approximate estimation problems based on spline subspaces; general

convergence results are given. We conclude with a final section in which we

present representative numerical findings obtained using the approximation

scheme proposed in section 3.

Most of the notation (e.g., HP for Sobolev spaces, L for Lebesgue spaces,
p

etc.) is quite standard and is in accordance with popular usage. The symbol

.fwill be used in general to denote the norm in various spaces in instances

where no confusion will result. However in some situations it is absolutely

essential to distinguish special weighted norms. These special norms will be



3

defined as they are used in the discussions below. For convenience of the

reader, we have summarized these definitions in a brief appendix for quick

reference.

Finally we wish to mention the motivation behind our efforts to develop

the methods presented below. In [4] and [10] one finds brief descriptions of

nonlinear delay equation estimation problems arising in the study of enzymatically

active column reactors. Although such problems actually prompted the theoretical

investigations that we report here, a discussion of the application of our

methods to these problems would be quite lengthy and thus will be the subject

of a separate report.
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§2 Formulation of parameter estimation problems for nonlinear FDE

In the present section we describe the parameter estimation problem for a

delay differential system and detail conditions under which solutions exist.

Our approach then is to reformulate the FDE - governed identification problem

as an abstract problem on an infinite-dimensional state space, concluding the

section by establishing the equivalence between the FDE and the abstract state

equation.

We consider the vector nonlinear delay equation

) = f(a, r , t, x(t), xt, x(t-r1 ), ... , x(t-r )) + g(t), a < t < b

(2.1)

{(x(a), x) = ,

where xt denotes the Rn-valued function 0 - xt(O) = x(t + 0), - r < 0 < 0, and

g is a general Ln (a, b) perturbation term. The equation depends on the parameters

y - (C, q), where t (n, *) is the initial data in some set S C W, with

W F (,(0), )R . L2n(- r, 0) I*EH 1 (- r, 0)).

The parameter q - (m, r., ..., r ) is assumed to be in Q = A x R where a is a

coefficient-type parameter in the set A C R" and the discrete delays are chosen

from the set

R - {(r1 , ..., rV)cRVIO - r0 < r 1 < ... < rv < r, r > 0

with r > 0 fixed and given throughout this paper.

To simplify notation we shall use to denote the norm on L n r , 0)

while we use 1'1 to denote the norm on L (- r, 0) and L2(a, b). We make the

following standing assumptions on f throughout the paper:
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(HI) The mapping f satisfies a global Lipschitz condition on

Rn x L2(- r, 0) x Rn" uniformly in (a, r ) e Ax[O, r]. That

is, there exists mI E L 2(a, b), m > 0, such that for all

n n in)( wi, , , wV), (6, X, Y1  .. I y) R R L 2 (- r, 0) x R

If(a, r , t, , 1, Wl, ... . w)- f(a, rV, t, 6, xY' ... I YX
V

<--(t) fj -61 + I - X1 + E w - yi}
V i=l

for all (a, r) c A x [0, r] and a.a. t c [a, b].

(H2) For each (a, rV) E A4 [0, r],

f(a, rV, • .... -): [a, b] x Rn x L2(- r, 0) × RnV " Rn

is differentiable, and

t - f(a, rV, t, (0,), P, ..(- r- rV)) is in H (a,b)

for every 1P L Cn(-r,0) - C([-r,O];R n ) and every (a, rI .... r\) E- AxR.

(H3) Given any x c C n[a-r,b], the mapping

a ") ft(a,r ,a,x(o),XaX(a-r 1 ) ... ,x(a-rV)) is in

Ln(a,b) for all q c Q.

(H4) The function f is continuous on A x [0, r] x [a, b] x Rn x L2(- r, 0) Rnv.

Remark 2.1 It follows immediately from (Hl) and(H2) that f satisfies an affine

growth condition; that is, for a given x e L n(a - r, b),

(2.2) If(a, rV, t, x(t), xt, x(t- rl), ... , x(t - r

V
<m l(t) flx(t)! + 1xtlr + z fx(t - ri)j) + m2(a, rV, t).

-lv iPl

where m2(ot, rV, t) = ff(a, rV, t, 0, ... , 0)J is in L2 (a, b). Quite standard

arguments may then be employed to demonstrate that, for each q c Q,
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t - f(a~r , t, x(t), xt, x(t - r1) .... x(t - r)) is in Ln(a, b) and that the

mapping depends only on the equivalence class of x; therefore there will be no

difficulty associated with point evaluations of x appearing in f since we shall

write (2.1) as an equivalent integral equation.

Before we direct our attention to the estimation of the parameters appearing

in (2.1) we shall first state results guaranteeing the existence, uniqueness and

continuous dependence of solutions to the state equation for each choice of param-

eters (c, q) e S x Q.

Theorem 2.1 Let y - ( , q) = (n, *, a, rI, ... , r ) be given in S x Q. There

exists a unique solution x to (2.1) on the interval [a - r, b] which depends

continuously on {n, , g} in the R x 2(-r,o) x L2(a,b) topology.

In the proof, which may be found in [10, p. 6] and will not be detailed here, one

employs general uniform contraction principles (see [12, p. 7]) and relies heavily

on hypothesis (Hl) and the growth condition (2.2).

We turn now to an examination of (2.1) when the parameters, including the

delays r1 , ..., r , and initial data (n, *) are to be estimated. We will restrict

our attention to parameters in the admissible initial data-parameter set

F = S x Q where we assume throughout that F has the following property:

(H5) Q is compact in R U+V and S C W is compact in the Rn x L n(- r, 0)
2

topology.

The identification problem consists of finding y E r which provides the best

least squares fit of the parameter-dependent solution (of the model equations

(2.1)) to observations of the output at discrete sample times. The problem,

which could also be reformulated as a maximum likelihood estimation problem,
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may be formally stated as follows:

Given g and observations {u}, u, E RS, at times {ti , i = 1, ... , M,

find y in F which minimizes

M

(2.3) J(Y) IC(q)x(t.; y) - u ]2
21

over all y = (7, q) in F. Here C is a given s x n matrix continuous in

q; and u(t;Y) C(q)x(t;y) represents the "observable part" of x(t;y), the

solution to (2.1) corresponding to y.

Remark 2.2: For y = (i, , a, rl, ..., r ) the optimal parameter, it may happen

that r < r so that we actually only need defined on [- rV, 0] to integrateV

the state equations (2.1) (and, in fact, the we obtain in practice will be

defined on that interval only). We will view as a function on all of [- r, 0]

by making an arbitrary, but definite, continuous extension from - r back to - r,

so that (n, ) is an element of S as required.

Remark 2.3: The compactness assumption on S will not be difficult to satisfy

in practice since a sufficient condition for compactness is that all elements

(n, ) in S are such that n belongs to a compact set in Rn and 0 is bounded in

H (- r, 0). An example of one such admissible initial data set is the set of

all polynomials on [_ r, 0] of order < k (k a nonnegative integer) with coefficients

in a compact set.

§ 2.1 An abstract reformulation of the estimation problem

We next reformulate (2.1) as an abstract evolution equation in an infinite-

dimensional state variable. Our approach involving use of the state space

Rn x L (- r, 0) is quite standard and well-established in the FDE literature

.. _ •2
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(see, for example, [2] and the references therein); however, the dependence here

of operators and state spaces on unknown parameters requires that we make such

definitions in this and the following section with a certain amount of care.

We will let Z = Rn X Ln(- r, 0) with norm 1'I induced by the inner product
0T T n nl

<(c, ),(6,x)> T6 + X T . For (q, t) c Q x [a, b], ( E, i) R X C (-r,O)
-r

define F(q, t, 6, i) = f(a, rv, t, , i, p(-rl), ..., y(-r.)) and A(q, t): W - Z by

(2.4) A(q, t)(*(O), iP) = (F(q, t, P(0), i),V p),

n

where Nj denotes the L (- r, 0) function that is the derivative of i. In
2

addition, let G(t) = (g(t), 0) E Z, for t c [a, b].

The equivalence of the FDE (2.1) to an abstract evolution equation is

detailed in Theorem 2.2; before proceeding, however, we need two results that

also will be called upon frequently in §3, so they are stated here as lemmas.

Our first proposition is actually a restatement of the well-known result [8, p. 100]

that d- Ijx(t)12  <;(t), x(t)>.

Lemma 2.1. If X is a Hilbert space and if x: [a, b] - X is given by
t

x(t) = x(a) + f v(o)do , then
a

t

Ix(t)1 2 _x(a)12 + 2 f < x(a), v(a) > do.
a

The second result describes how to construct an equivalent topology for Z

so that the nonlinear operator A satisfies a dissipative-type inequality. The

lemma, a nonlinear version of that found in [2, p. 186] and [6], greatly simplifies

our calculations and is the foundation for our development without the use of

semigroups.



Lemma 2.2. Let q = (a, rl ... , r) c Q be given. For y - ( , ),

z i (6, X) E Z define a new inner product on Z by <y, z> q T +o q

f (O)'(p)(q)(O)do where p(q) is given on [- r, 0] by
-r

1 , 0C r,- r

(2.5) I(q)(0) = 2 0 e rv, - r V]

v+l, 0 L (- r,, 0].

Then,

<A(q, t)y - A(q, t)z, y - z>q < W(t)fy - Z 2

q q

for all q c Q, almost all t c [a, b] and all y, z c W. The function w > 0 is
3 v+1l

in Ll(a,b) and is given by w(t) = - ml(t) + v +  2 Ml(t)"
212 21

Proof: Let y - ((0), p), z - (x(O), X) c W.

<A(q, t)y - A(q, t)z, y - z> q
[F(q, t, p(0), p) -F(q, t, x(O), x)]T[P(O) -x(O)]

O (T - DX)(* - X)(0)'(q)(O)dO
-r

where

f (Vtj ) - )( - X)()'(q)()dO
-r

-r 2 dO

-r(/

+ 2. ; p )(vI 2 2 - J)dO
ii -rj 12
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p(- r) - x(- r)1 2  ) X(0)2
2 2 + 2 +

v-i PC- r ) - x(- r4) 2  Hs(- r) - x(- r) 2
- i-I 2 2 • 2

+rv (-r) - x(- r)]2
< v + 1) y() _ X(0)12
- 2 2

Therefore, for almost all t e [a, b],

<A(q, t)y - A(q, t)z, y- z>q

<ml(t)Ii(O) - x(O)1 2 + m(t)!P - X1r Iw(0) - x(O)l

V

+ I I(- rj) - x(- r )I (m1 (t)*0(o) - x(O)1)
J=1

+'V + 1 (o) X(O)12 _ 2
+V1 - 2  J (- r X(- ri

2 J =1

mI(t) Vml) (0 m(t) 2
<(ml(t) + 2 2 + 2+2 Xr2- 2 IP(O) - x(O) + 

2

2 2
where we have used repeatedly the fact that ab < 1+-- . It follows then

that

2<A(q, t)y - A(q, t)z, y - Z>q <- W(t (0) x(O)l

+ wt)Il' - xI2

V

< W(t)Iy- z12
q



It is clear that for all q c Q, the norm "q on Z induced by the oq)q

weighted inner product is equivalent to the usual Z norm since 1< I (q) < v + 1.

Theorem 2.2 For fixed y E r let y(t; y, g) - (x(t; y, g), x t (, g)), where

x is the solution to (2.1) corresponding to y = (, 0, a, rl, ..., rV ) and

g E L2(a, b). Then y(y, g) is the unique solution on [a, b] of

(2.6) z(t) = + ft {A(q, a) z(a) + G(a)}d 
a

Furthermore, y(t; y, g) c Z is continuous in t c [a, b], and uniformly continuous

in {C, g) E W x Ln(a, b) (in the Z x L (a, b) topology) uniform in t E [a, b].
2 2

Proof: We shall sketch the proof of the theorem, which demonstrates that (i)

the integrand in (2.6) is well-defined and integrable, (ii) the equality in (2.6)

holds for z(t) = y(t; y, g), and (iii) the solution y is unique and continuously

dependent.

To prove (i) we first must show that y(t; y, g) E dom (A(q, t)) - W for each

t e [a, b], or, since xt (0) - x(t), that xt  H 1(- r, 0) for all t. Using the

affine growth condition (2.2) on f and the continuity of x it is not difficult

to show that t - f(c, rV, t, x(t), x t , x(t - r1), ..., x(t - rV)) is square-

integrable on [a, b] so that, using the fact that x - * on [a - r, a] , we

obtain x c L (a - r, b). Standard estimates in [11, p. 254] may be invoked
2

to demonstrate that

(2.7) A (x xt) . (x)t in L2(- r, 0)
C t+C -t t

so that V (xt) L ( n) e n (-r, 0), for each t c [a, b]. Arguments similar tot t L 2

these may be used to show A(t)y(t) + G(t) is integrable on [a, b], concluding

the proof of (i).
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The argument that y(t) = (x(t; y, g), xt (y, g)) satisfies equation (2.6)

is trivial if this equation is examined componentwise: The Rn part of (2.6) is

simply a restatement of (2.1) while the desired equality for the L2(- r, 0)

component follows immediately from (2.7).

Finally, uniqueness and continuous dependence of solutions on (C, g)

follow from arguments that will be repeated often throughout this paper and will

be presented in detail here for the case of continuous dependence; uniqueness

also follows from these arguments. Let zl, z2 denote solutions to (2.6)

corresponding to (c1 . g1), (C2' g2} respectively with q c Q fixed. Then, for

t c [a, b],

Z1 (t) - z2(t) I I - C2 + 1 {A(o)z(o) ()
a

+ (gl(O, 0) - (g2(0), O)}do

so that from Lemma 2.1,

12 < 1 2
1zl(t) - z2(t)Iq < - 2q

t
+ 2 f <A(o)zI(o) - A(a)z 2 (o). zl(o) - z2 (o)> do

a

* 2 f I(91(o) - g2 (o), O)lq Iz 1(o) - Z2 (O)IqdO
a

kt 2 do
I1 - 21q + 2 f w(a)zl(o) - z2(a) q

a

t 2 t 2
+ j I(Sl(o) - g2 (o), O)q + q Izl(o) - z2(o) do

a q a2 q

b2
-- l - 22

2(v + +f (2w(a) + 1) 1z1 (o) - z2 (o) 2 do.21 ( + 1 + gl 91 2 q
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Gronwall's inequality may be used to obtain

zW(t) - z2(t)12 < (k1 - 2 2(V + 1) + g - 2

b
exp f (2w(a) + l)do

a

from which continuous dependence (uniform in t E [a, b)) follows at once.

n
We have demonstrated the equivalence between an FDE in x(t) e R and an

abstract evolution equation (AEE) in the infinite-dimensional state variable

z(t). We remark that the infinite dimensionality of (2.6) is inherited from

(2.1) in that in the latter the history of x on [t - r, t) is required before

x may be determined at t. Thus the computational difficulties encountered with

(2.6) are not simply an undesirable feature of this reformulation of (2.1) but

rather are a manifestation of the inherent infinite dimensionality of the

underlying FDE.

In view of the established equivalence, the ID problem in (2.3) may be

reformulated as an abstract ID problem, where we now wish to find y E r which

minimizes

(2.8) J(y) = 2 1C(q)n0 z(t 1 ; Y) - uil

over all y c r where Z0 : Z R is defined by 0(, ') -p

In the next section we investigate the problem of approximating the infinite-

dimensional identification problem (2.8) by a sequence of finite-dimensional

state space identification problems (where the state variable satisfies an

ordinary differential equation (ODE) on a finite-dimensional state space X).

Fundamental to this undertaking is the establishment of the convergence of

........................
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solutions of the approximating systems on XN to solutions of the original

equation on Z. Although our formulation is a classical one of the Ritz type

(involving orthogonal projections of an infinite-dimensional system onto a

sequence of finite-dimensional subspaces) our problem is complicated by the

fact that the state space changes for each choice of parameters q -(, r,, ...,

r V). This concept is explained in detail in [4, p. 800) and involves the idea

that the natural state space for z(t) associated with the parameter choice
q - (a, rI .... I rV) is X(q) - Rn x L2(- rV, 0), where in general X(q) f Z.

Since we would expect the (finite-dimensional) approximating spaces X N(q)

associated with q to be subspaces of X(q), we obtain a sequence of spaces {X N(q))

where X N(q) is different for each choice of q and is usually not contained in Z.

§3 Approximate parameter estimation problem

Our focus in this section is the definition of finite-dimensional ODE-

governed estimation problems which approximate the ID problem governed by the

AEE (2.6), and their relationship to the original FDE-based ID problem. While

we shall present the details for a scheme based on linear splines, arbitrary

order spline approximations may be employed in a similar way with only slight

modifications in the arguments detailed below (see the theory developed in [6]

on which all of our development here is based).

For parameters y - (4, q) c r consider

t

(3.1) zN(t; ) - pN (q) + f q o)zN o; 7 + pN(q)G(a)1da, t c [a, b],

a

where AN and PN are defined via the following q-dependent operators and spaces.

For a given q - (a, rI, ..., r V ) we define the Hilbert space X(q) as the setV 0

L (- r , 0) with inner product <(E, X), (5, x)> T + f
2 p~q-r

V
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where p(q)(O) P'(q)(O) - 1, with P defined as in (2.5). We shall also use an

equivalent topology on X(q) given by the (unweighted) inner product

<(c, 'p), (6, X)'vx " T6 + j '(O)X(o)dO. The operator C (q): X(q) - Z is
-r

the "continuous extension" operator defined by C (q)(C, ip (, ) where

on r- ] = 0,- r, r )0 - r, - r ); i(q) Z X(q) is defined

by i(q)(&, ') ( , i) where ' is the restriction of ' to [- rV, 0]. The sub-

spaces xN(q) of X(q) are defined by XN(q) - {((0), ) is a piecewise linear

spline with knots at t (q) - [-(j - (k-)Nrk - rk )/N] - rk

j = (k - 1)N + 1, ..., kN, k = 1, ..., v; tN = 0} and we denote by

w (q) : X(q) - xN(q) the canonical orthogonal projection of X(q) onto XN(q)

along XN(q)'. Finally, pN (q) : Z - xN(q) is defined by pN (q) .N (q)i(q) and

AN(q, c) X(q) - XN(q) i given by AN(q, o) = iTN(q)A(q, o)TN(q) where here

A(q, a) is interpreted as an operator on X(q) given by A(q, o)(p q(O),q)

(F(q, a, 'q(0), 'q ), Nq ) for (p q(0), q ) e X(q) (with q the extension of pqq- q] qeie b -q q q qtid

to all of [- r, 0] defined by 'q 0 outside of I- rv, 0]).

AN iswl-ele ic N~ N
Remark 3.1 A is well-defined since XN(q), the range of nN (q), is contained

in the domain of A(q, t). Note also that A N(q, t) actually may be considered

as an operator from Z into XN(q) if it is defined by A N(q, a) PN (q)A(q, o)PN (q).

For present uses though, PN (q)4 and zN (a, y) are in XN(q) so that viewing

AN(q, a) as an operator from xN(q) to itself yields (3.1) as an equation on

X"(q), a finite-dimensional space since each of its elements is completely

determined by its value at each of vN + I knots. Equation (3.1) is then

equivalent to the ODE
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zS;N y) A AN(q, t)zN(t; y) + P N(q)G(t), t c (a, b]

(3.2)

z N(a; -y) P N(q)i,

which, as we shall show in the arguments that follow, approximates (2.1) in

some sense.

When the parameter y is unknown we may state an "approximate identification

problem" PN associated with (3.1) and (3.2):

Find y - (N , q ) e r so as to minimize

N 1M No S 2

i (Y) IC(q) Z(t; )- ul

over y E r, where g and observations ui at times ti , i - 1, ... , M are

given and z N(t; y) satisfies (3.1).

We now establish the existence of a unique solution to (3.1) for each

-N thchoice of y, and, further, the existence of a solution y to the N ID problem,

P N' First we must state an analog of Lemma 2.2 which demonstrates a type of

dissipativeness for AN .

Lemma 3.1. Let q - (a, r., ... , rV) c Q be given. Then

N N N N N _N<A (q, t)y - A (q, t)z , y - z >
Spq

_<~t ~ - Z {0,

N N -for all yN, z c x(q) where w, defined in Lemma 2.2, is independent of q and N.
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Proof: Note first that for y, z c W(q) f ((O), e)It H rv , 0)) we may

argue that

<A(q, t)y - A(q, t)z, y - z < w(t)ly - z12

using estimates similar to those used to prove Lemma 2.2, where w(t) is
N N X()_ ~)

independent of q, N. Then for y , N C W(q),

<AN(q, t)yN - AN(q, t)zN , yN _ zN> p,q

W < N(q)A(q, t) N(q)yN _ N (q)A(q, t)iT N(q)z , y N zN p,q

N N N N N N N N
= <A(q, t)7, (q)y - A(q, t)iT (q)z , 1T (q)y _ N(q)z >

pq

W(t)NyN _ zN2

< r()lN - z l
p,q

where we have used the properties of the (self-adjoint) orthogonal projection

N
w and the dissipativeness of A(q, t) on W(q).

II

Our next result demonstrates the existence of solutions to (3.1) as well

as to the identification problem PN . In addition, the proof sheds light onNr
the numerical procedure used to solve (3.1).

Theorem 3.1 Let g E L2(a, b) and y ( , q) c r be given. Then there exists

a unique solution zN (t; y, g) c XN(q) to (3.1) on [a, b] with the property that

the map {i(q) , g - z N(t; (C, q), g) is uniformly continuous on X(q) x L2(a, b),

NNt
uniformly in N and t. Finally, there exists a solution Y to the N

identification problem PN for each N - 1, 2,....
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Remark 3.2: The continuity with respect to initial data given in this theorem

is actually "uniform in q E Q" in the following sense: Given c > 0, there exists

6 > 0 independent of q and N such that for cI, 2 c S and q c Q with

Ir.1 -2'X,q < 6, we have IzN(t; ( l' q), g) - zN(t; (c2' q)g) X,q < C. This

type of "uniformity in q" follows from the arguments given below for Theorem 3.1

and will be used in establishing the convergence results of Theorem 3.3.

Proof: We first argue existence, uniqueness and continuous dependence of

solutions to (3.1). We shall do this using arguments similar to those in [1] and

[6] (where zN (t) is written in terms of basis vectors for XN(q)). Let q c Q be

fixed, q - (a, rI , ..., r and let e denote the scalar first-order spline

function on [- rv, 0] characterized by

e (t) i, j - 0, 1, ... , vN
ii ii

where 6 is the Kronecker symbol and tN = t (q) are the knots defined for

functions in X N(q), i 0 0, ..., vN. Define

^N Ne (0 , N
e , (e(0 , j - 0, ..., vN, and

N N N
(e0 ... , e ) I, where

I is the n x n identity matrix and ® denotes the Kronecker product so that

N is an (n xn(vN + 1)) -matrix-valued function on I- r , 0]. Represent by

a the matrix-valued pair,

8N (8N(0), ON).

From (6], XN(q) - span { 1, n(vN + 1) where the basis vectors

...............................................
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NaONo) ON) ON th N.

are given by 8 1 (80) 8 the jt column of 8. It follows then that

since z N(t) E XN(q), there exists wN(t) 6 Rn(vN + )such that

N N N
z Wt B w Mt

vN N
I w~ (t)e~

= V(t) , IN w (t)e)
J =0

frwN M ERn, 0,., vN. Furthermore, since P N G~)adPNar

vectors in AN(q), there exist G C~t), CN E R~N+1 such that

PNG(t) = a8 G N(t)

and N= NN

so that equation (3.2) may now be written in terms of B as

N w (t)- A N(q, t)8wN(t) +8a NG(0, t E (a, b]

(3.3)
jN N a) 8N CN

Let A t)q deoeterpeetto of A N(q, t) (restricted to XN(q)) with

respect to the basis of XN(q). Here A N(q, t) is nonlinear as opposed to the

matrix (linear) version of the operator arising in [6]. As in [13 atid [6], usual

Galerkin calculations establish that the coefficients w N t) in (3.3) satisfy

wN(t)- 0(q, t)w (t) +G (t) t t£(a, b]

(3.4) 4
wNv(a) .- N
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We next establish a representation of AN(q, t) which will enable us to consider

the existence and uniqueness of solutions to (3.4) as well as the realization of

numerical solution techniques for the system. Note first that

A N(q, t)zN (t) = 7N(q)A(q, t)r N(q)(wN(t), w (t)e) N

J=o j

vN vN vN vNNN N i N N, N N N N N N' N
(f i o 0 j  ' - j= .

wNt VN N N= -RN(q)(?(cL,rv~twN(0)) .JI0w.(t)De )o (t)Ve )

where A x [O,r] x Rl+ n (vN + 1) - Rn is defined by

?(a, r , t, (Vo ... , vN))

vN vN vN
f(a, r o V

for v Rn, J - 0, ..., vN, and can be shown to be globally Lipschitz in

T n(vN + )
... , R since f satisfies such a condition. Thus,

(q, )wN) M N(t), where N n(vN + 1) is such that

t~vN~^N I~ t) R

(t) AN(q, (a v

N ( q ( . N v N N ( ) eN
vo t. w (t)), [ji
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It follows from [6, p. 508] that whenever N(q)(, P) = NN (E, X(q),

N n(vN + 1)
6 c R ,wehave

N = (Q N hN(,

where the nonsingular matrix QN is given by QN = (BN(o))TBN(o) +

f 0N(O) TN(6)P(q)(O)dO and h N(C ) (BN(o))TC + f N(O)r (O)P(q)(O)dO.

-r -r

We may apply these results to obtain

h NNa(t) = (QN- hNV(, t, WN(t)), I jt~j
'J=O

= (QN)I r , 0t' w M) + (QN) - w12 N(t
0

0

where HI2 is given in [6] and [10] by

N <eo eO> "'.<.. 0

/ *N N *N N
<eN .

>  . <,N' ~N12
*N NN N

<eN N eN,

In this matrix <., .> denotes the o(q)-weighted L2(- r., 0) inner product.

Similarly, G N(t) in (3.4) is given by G N(t) = (Q N)- h N(G(t)),

h N((g(t), 0)) (g(t), 0, ..., O)T e Rn (vN + 1), so that (3.4) may be rewritten

as

*N (t QN )-l N ?a \,t ) ~) .. 0 T

(3.5) + (QN)-1 HN2wN(t), t c (a, b]

L wN(a) N,
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N N n(vN + 1)
an ODE in w (t) = w (t; y, g) E R Since ± satisfies a global Lipschitz

condition in w N(t), the form of (3.5) allows one to employ standard ODE theory to

obtain the existence of a unique solution w Nt) on [abi. We can therefore conclude

that

N N NzN(t) = Nw t)

is the unique solution to (3.1) (and (3.2)) on [a, b] for ; c Z given.

The proof uf the continuous dependence on C and g as stated in the theorem

is identical to the corresponding proof in Theorem 2.2 where dissipativeness

for A N(q, t) is now used to show that whenever Ir, - ;21X,q < 6 and

IgI - g2 l < 6, 5 = 6(E,w,a,b) independent of t, q, and N, we have for the
NN

corresponding solutions, zl(t; ( l' q), g,) and zN(t; (C2' q), g2,

1z N(t) - z N(t)j

< IZl NtW - z2N(t)Il

<C

for all t c [a, b].

-N
Finally, to establish existence of a solution y to PN' one argues continuity

(for fixed N) of the map y = ( , q) - 0 zN(t; y) = w0(t, y) and thus infers

continuity of y - J N(y) on the compact set r. But it is not difficult to see

that the right side of (3.5) depends continuously on q as do the basis elements
-N

e (q). Continuous dependence results (with respect to parameters and initial

data) from the theory of ordinary differential equations can then be invoked

to obtain the desired conclusions.

I ___
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-N th
In view of the last result, we are assured of a solution y to the N

estimation problem P (which is a standard least squares problem governed by
N

an ODE). Since an application of conventional optimization techniques requires

a solution to (3.1) for each choice of y, straightforward computational schemes

may be devised to solve (3.5), the associated ODE in the "Fourier" coefficients

N
w (t). Although it may be relatively easy to solve the finite-dimensional

problem P the solution y we find is meaningful only if y Napproximates the

solution y to the original ID problem. Fundamental to the establishment of

-N - I
this fact (i.e., the convergence of y to y in some sense) is the demonstration

N N
that the sequence of state variables {z (t; y , g)) converges to z(t; y, g) given

N N
any sequence fy ) with y -) y ff(C, q) in r. We shall first consider this

problem for limits y and perturbing functions g such that {C, g) lies in a smooth

but d4nse subset of W x Ln (a, b) (which simplifies our calculations). We
2

then extend the convergence results for all limits and perturbations g such
Ln

that f6, g} E W x L2(a, b).

§3.1 Convergence of state variables

We shall assume that a sequence of parameters fy N in r has been given,

N = N N N, N N N N N ^(
y = q) = ( , , rI , ..., r and that y = ( q)

^V 1. l , N n R%+V
( *, ,,rl, ....I r ), in the sense that (i) q q in and (ii)

- N)~ N 0 0 as N w. We make the following standing assumptions

on y and S:

(H6) There exists some 6r > 0 such that rk - r k_ > 6 k - 1, 2, ..., v.

+ N N

(H17) If C c S then C (q )i(q )~c S for all N. '
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Remark 3.3: We note that the set S Involving all polynomials of order < k on

[- r, 0] mentioned in Remark 2.3 does not, strictly speaking, satisfy (H7).

However, the reader can easily see from the arguments below that a modification

in defining the extension operator (rather than extend from [- r , 0] to

[- r, 0] by constant values, extend any polynomial on [- r,, 0] to [- r, O]

by simply extending the domain of definition of the polynomial) would allow the

set S of Remark 2.3 to satisfy (H7) and not require any change in the convergence

arguments to follow.

In what follows we will simplify notation by abbreviating X
N - X(qN),

N NN N N N N N NN

AN(t) - A (q , t), A(t) = A(q, t), P P (q), i i(q ), r ir (q ),

-N- C+(qN), and +N1 N = 1.1 N " We shall also use I-IN to denote the

p,q

L n- rN, 0) norm weighted with p(q N). We remind the reader that 1-1 denotes

n n N
either the Z or L2(- r, 0) norm while 1'1 N denotes the unweighted L2 (- r , 0)

rV

norm. When no confusion results we shall also write z(t) instead of z(t; Y, g)

N N N
and z (t) for z (t; y , g), the solutions to (2.6) and (3.1) associated with y

N
and y , respectively.

For q given in Q, define 7(q) = c g c W x L2(a, b)14 - ( (0), '),

iS t 12(-r, 0), g E 11l(a, b), ip(0) F(q, a, p(0), i ) + g(a)i and define

S - {((p(0), i,) czl c H2(- r, 0)1.

Lemma 3.2. For any q c Q, l(q) is dense in W x L2(a, b) (in the Z x L2(a, b)

topology). Furthermore, if {;, g) c I(q), then the solution z(t;(C,q),g)

(x(t;(.,q),g),xt((C,q),g)) to (2.6) corresponding to C, q, g, satisfies

z(t) c S for all t E [a, b].

.... ... ... ...... ............. .....= ' "' .... : ... ...'" :-' " , r .;, .J -, :'i .:. _ ._ -.. .



25

Proof: Let q e Q and c = (tp(0), *) be fixed in S and define I (q, c) =

n

{g L2 (a, b) Ig £ Hi(a, b), g(a) = tp(0) - F(q, a, p(0), 4p)}. Then for g

SL 2(a, b) given and e - 0, standard arguments may be used to construct a g2^

that is piecewise-C (1) satisfying g(a) = (0) - F(q, a, w(0), t) with

Ig - g! < E. That is, I(q, r) is dense in Ln(a, b). Furthermore, for ' C S,

the pair {, g} belongs to I(q) whenever g E 1(q, r), so that

U [{ } I(q, )]c 1(q) C- W x L2(a, b)

where the first set is dense in the last since S is dense in W. It follows

that 1(q) is dense in W x Ln(a, b).

Required for the proof of the second part of the theorem is a verification

that x E L2 (a - r, b) (since D2 (x) (x)t for t c [a, b]). If , g c (q),

= (n, 0), it follows that x c C('1 La-r,b] since: (1) x(t) ; (t- a) for

t e [a - r, a); (2) for t E (a, b), x(t) - f(a, r , t, x(t), xt, x(t - rI), ....

x(t - rV)) + g(t), which is continuous from assumption (H2) and the definition

of 1(q); and (3) x(a-) - ;(0) - F(q, a, 0(0), 4) + g(a) x(a ). Further, the

differentiability of f and g yields

x(t) - f (a, rV , t, x(t), xt, .) + f (a, rV, t, x(t), xt, ...) x(t)

+ f [a, r . t, x(t), xt, ... ; t]

V

+ f (a, r , t, x(t), xt , ... )x(t - ri) + i(t)

for t c (a, b), where f6 denotes the Frechet derivative of f(a, r , a, F, p,

Y' "'' YV ) with respect to 6, 6 a, Y, ... , y The global Lipschitz

condition on f ensures that these derivatives (excluding fo) are bounded, so

- ..
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that, for almost all t c (a, b),

and similarly for f Y Therefore,

lx(t)I < jf_ (a, r. t, x(t), x to ... )I + cm 1(t) + g(tfl

almost everywhere on (a, b), where i, g eL 2(a, b), and c is a constant.

Using (H13) we thus obtain that x c L n(a,b) and it hence follows that

x c L 2 (a - r, b) since x(t) O (t - a), t E (a - r, a), 0 L 2- r, 0).

I* --I

Essential to our convergence proofs are certain standard estimates from

the theory of spline approximations, in particular the Schmidt inequality and

Theorem 2.5 from [16]. The inequalities are stated in the next lemma.



27

Lema 3.3. Let z - ('(0), ,) be given in S. and denote by (4, N(o), pN) the

element PNz of XN. Then the following estimates may be obtained for N sufficiently

large:

(3.6) NN - zDN _01vi1

N k
(3.7) 1( _ < -N-N + D2  01

k r N

where k I and k 2 are positive constants independent of N and qN

Proof:

Ip N z - N I""z_- iNzIN

< IZ N  - N z N.

N z N

where zN - (N (O), ) , 1,N the interpolating spline for E € H 2- r, 0) with

knots It N. From [4, (6.10)] we know

N ~r 2 V1/2 IOS2 12 fvpI - 'PIN -< r 2 N 2 I

so (3.6) obtains. The calculations for the estimates in (3.7), (3.8) are found

in [4, pp. 814-1S].
f-I
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N N
These estimates may now be employed to show convergence of z (t; y , g) to

z(t; N,. g) (in the proper sense) when z(t) c S; i.e., when {tc, g)l c 1C).

Theorem 3.2. Let ({y N be arbitrary in r' with y N~ _+ y N = (iN , q N),

N N
Y q~ ) e r', where fc, gi E 1('q), and let z (t; y, g), z(t; y, g) denote

N
the solutions to (3.1) and (2.6) associated with y and y respectively. Then

IzNt; YN, g) _ PNz(t; "u, g)I,~

as N -* uniformly in t E [a, b].

Proof: We have a N (t =zN M -PN

P(N) + z ft {AN-~ P NG(a))d

NNk f t NN N
-P c+ A ()z () +P G() }d

a

A N~ (a + f{A(a)z(a) + P N()z da
a

NN NN

* 2~a ft <A N{OA (a)z ()p N P (a)z ()Nd o
a

* 2 ft <A N (C)zN () - A(a)z(O), LN(O)> do
a
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t

a

+ !AN(o)pNz() - p NA(o) )I2NN)d

a

AN(a) + I (2W(o)+ d)IAN(o)INdO

- N a Na

+ fb!AN(a)PNz o) - pNA(o)z(o)I NdO.

a

Gronwall's inequality may be employed (since the L1 function 2 + 1 is positive and

"N is continuous in t) to obtain

bANt) + f ((N) + 12 (N)) exp A (2(o) + l)do

a

where

El(N) = IAN(a)I 2

1
b( N()Nz(o) - pNA()z(o)I 2 do.

a

It remains to show that (N) p 0 as N ( i; that the convergence is uniform

in t is readily seen. First,
AIN N icp N t) < iN N

C (N -l N JA - IN 1

N N
converges to 0 as N -. from the definition of convergence of y to y. We

will also obtain 2(N) 0 once we demonstrate the dominated convergence of

IAN()Pz(o) - pNA() z()I -N0.

P IN N^' I
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N ) N 2n rN'

Let z(o) (y (0). y), PNZ(o) - (yN(o) YN ) Y v L n(- r N 0). Then

IAN(o)PNz(o) - pNA(a)z(a) 12

= 17NA(qN, )NPNz(G) _ 7NiNA(q, o)z(o)I2

= 17N(F(qN, a, yN(0), yN), DyN)

- N(F(q, 0, yg(0), y), Vy) lN :

N N 2

< IF(q N , 0, Y (O),Yo) - F(q, 0, y (0), y )12

+ I DVyN -y12
N

ETN-I(a) + T2N(c),

where yN must be extended to all of [- r, 0] (by defining it to be zero off

N, N N(G
[- r~' 0]) before F is evaluated at Y" From (3.7), T2(o) - 0 as N - '.

Furthermore,

N 1/2 ~ N N N N(T 1 0)) < IF(q, a y o), y) - F(q , , O). ya, y

N0

+ IF(qN, a, y0 (0) , yo) - F(q, , y (0), y)a

1 2
- r1(o) + 2)

where r2(a) - 0 as N - since quite standard arguments (recall (H4)) may be

used to show that the map
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q - (a, ... , r ) - F(q, a, ip(0), ip)

- f(a, r a, p(0), 'P, P(- rl ... , P(- r

N 1
is continuous whenever is continuous. In addition, T1(a) is 0( ) (for almost

all o) from (3.6), (3.8) since, for almost all a,

IF q No. NOY) q 0 o (0,o )I
NN NN N N

<(q , a) f (0) - (O)l + ly yI + ( y( r

a -'a N 0 1 a C-r

adyN - YIN < PN z (O) - z(N)lN  Therefore, for almost all a E [a, b],

T N(a) -+ 0 as N - , and the convergence (a.e.) to zero of the integrand of
1

E 2(N) is assured. Dominated convergence follows from similar arguments:

lAN(C)PNz(G) - PNA()z(o)2
N

< (t (a) + T2(a)) 2 + T N(a)

1 y 2 22M<

as before where, from (3.7), TN () < k 2 V2y 12 <20

sup ,V2y. 2 _ sup fo Iy(O)1 d0 < b ly(®)12 dO  I Y 2 <
M[acb b] a-r a-r L (a-r, b)

22
(we have made use of Lemmaa 3.2 to assert that Z(o) E S for all a; i.e.,

y H 2(a - r, b)). The Lipschitz condition on f and estimates (3.6), (3.8)

may be used to show

NJ

T o (a) < cM (a)Mo

for a constant c > 0 and almost all a. Finally,
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N NT( 2 IF(q , a. y(o), y) - F(q, a, y(u), y )I

< 2 sup IF(q, a, y(a), y)I
(q, o) cQx [ab]

where y was determined by a fixed q c Q and is thus independent of q and is

continuous. Again the continuity of F(q, a, y(a), y) in (q, a) may be easily

established, (q, a) in the compact set Q x [a, b], so that there is some

(q , a ) in Q x [a, b] such that

T2N() < 2 IF(q. a y(a ), y )I

- M < .

It follows then that, for almost all a c [a, b],

1A NW)P Nz(a) - P NA(a)z(a)I 2

< (Cm (O)Mo + M ) 2 + k2M h(a)
1 0 1 2 0

where h e LI(a, b) (since mI c L2(a, b)). The theorem thus obtains.

IID

We now turn to the main state variable convergence result for arbitrary

n{ , g} c W x L2(a, b); it contains the key arguments needed to prove Theorem 3.4

below which describes how solutions y (to P N) converge to y, a solution to the

original parameter estimation problem.

N N N N
Theorem 3.3. Suppose y - y where y - (CN q ) and y = (t , q) are arbitrary

in r. Then for any g c L2(a, b),
2.1
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N N

iOz (t; y , g) - 1oZ(t; Y, g)

as N - uniformly in t e [a, b].

Proof:

Oz (t; Y, g) - oz(t; 'Y, g)

N No N
I Oz y , g) - I 0Pz(t; y, g)

Nz
+ TTOp z(t; y, g) - i0Z(t; Y, g)l

N

T N(t) + T2(t)
1 2

where TN(t) 0 as N w uniformly in t c [a, b] from the convergence
N

70Pr z 0 7 0z, z e Z, demonstrated in [4, p. 814]. (Uniformity here is due to

the fact that z e {z(t; Y, g)It e [a, b]}, a compact set in Z). Further, since

I(q) is dense in W x L2 (a, b), a pair , g} may be chosen in I(q) arbitrarily%2

close to { , g} so that, given that

TN(t) < IzN(t; (C , qN), g) - p z(t; q ), g) IN

< N(t; (N, qN), g) _ zN(t; (N iN qN), )Il

+ zN(t; N iN , qN) g) _ pNz(t; ( q), g)

+ PNz(t; q, g) - N(t; g)IN

the first and third terms may be made as small as desired from the continuous

dependence of z , z on {iN , g} c X(qN) x L2n(a, b) and (c, g} c Z L2n(a, I)

respectively, uniform in N and t (we may use this result for the first term
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since - N ON., N C N I Nixq INN iN IN + N'\ - INN sine :N C~N X,q - CI + i -C IN is

arbitrarily small from the convergence of N to ). Finally, the middle term

goes to 0 uniformly in t F [a, bi as N + since ( E, gi ( and the parameters

+ N 't N
(CN I , q ) involved converge to ( q, q) in the sense required (Iq - qI -, 0 and

1i - iN(CNi)IN = 0), so that we are quaranteed the uniform convergence of

N NW 0z (t; y , g) to -oz(t; Y g).

§3.2 Convergence of Parameters

Our attention to this point has been focused on the convergence of solutions

N
z (to (3.1)) to the solution z (to (2.6)), once the convergence of any sequence

of parameters has been established. In reality, though, we have yet to determine

-N
that any sequence of solutions fy} to P is in fact convergent; even then, we

N

must prove that the limiting value y is indeed a solution to the original param-

eter identification problem. The result we now state addresses this question

and indicates when an approximate ID problem PN may be used to compute numerical

solutions for the original problem.

-N N
Theorem 3.4. Let {y t, y £ r, be a sequence of solutions to the approximate

parameter estimation problems PN . Then there exists y c r and a subsequence

fy } such that y - y and, if y and S satisfy hypotheses (H6) and (H7), y is

a solution to the original parameter identification problem.

+ --N
Proof: From (W1), the sequence 4 C iN} ) belongs to S and S is compact in the Z

Nk

topology, so that a subsequence satisfies IC + - 0 for some C S.
Tktk N

The compactness of Qguarantees the convergence of a subsequence of {q 1,
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_Nk _ _ Nk Nk -Nk

q q for some q c Q. Relabelling as y , we have a sequence y =(

Nk

q ) in r that converges toy = ( , q) in the required sense because qk q

and

N N
Nk 1/2 -k1iNk r N k CINk Nk Nk iNk C Nk X,q

< 1/2- + CNk _
N k Nk

It remains to show that y is a solution to the original ID problem. We have

(see (2.8) and JN in the definition of PN)

M
J(Y) = 2 . lC(q)7To0Z(t i; Y, g) -uil

i=1

N N= lim J k k

k

Nk
<lim J (Y)

Nk  -N k

where the continuity of C and the convergence of n0 z  (t; y , g) to Toz(t; Y, g)

is used to obtain the second expression and the final inequality holds for any

-Nk N
y c r since y is a solution to P Nk. The convergence of n 0z k(t; -y, g) to

T0 z(t; y, g) for any y E P also follows from Theorem 3.3, so it follows that

J Nk(y) - J(y) as Nk + ®, or that

J(y) < J(y)

for any y c P. Thus y is a solution to the original identification problem.

I-I
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54 Numerical Results

In this concluding section we present a sample of numerical findings

obtained using the spline approximation estimation schemes discussed above.

The test examples we investigated were chosen with certain types of applications

and/or difficulties in mind. Example 4.1 deals with a nonlinear pendulum

(small oscillations are not assumed) with damping through a linear feedback

on the velocity., i.e., U(c) = kx. We assume the existence of accuator delays

in effecting the feedback laws. (Delayed damping and delayed restoring forces

are quite common in mechanical systems -- see Chapter 21 of [15].) A possible

application is associated with the design of a damped "pendulum" to "track" a

given course or program x(t). Example 4.2 involves a nonlinear nonautonomous

multiple delay equation in which the nonlinearity is of the Michaelis-Menten,

Briggs-Haldane velocity approximation type. Such nonlinearities occur in

biological applications in which enzyme mediated reactions must be modeled.

Our third example concerns a linear multiple delay system with unknown coef-

ficients such as might arise in multi-compartment transport models, while

Example 4.4 contains a nonlinearity that is only locally Lipschitz and thus

it does not satisfy the hypotheses detailed above. It is interesting (although

not at all surprising) to observe that the methods under investigation also

perform admirably when applied to examples of this type.

The computations reported below were performed on the IBM 370/158 at

Brown University. The goal of our numerical efforts was to test convergence

properties of the estimation algorithm on selected examples. This was done

in the following manner. "True" values of the parameters to be estimated

were chosen and an independent method was used to integrate the systems with

these values. These "exact" solutions or these solutions with random noise

nowww"
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added were used as observed "data" (a number of "sample" data points were

chosen) and the spline-based methods were employed with a least squares

criterion. For a given N, an IMSL package (ZXSSQ)for the Levenberg-Marquardt

method was used to iteratively find the corresponding parameters.

Example 4.1. (Nonlinear pendulum with delayed damping).

We consider the system

x(t) + kx(t - r)+ (g/t)sin x(t) = 0 0 < t < 7,

x(S) = 1, 0 < 0,

(e)=0, 0 < 0.

"Data" consisting of 28 sample points at times in [0, 7] were generated for

"true" values r = 2, k = 4, and g/. 9.81. Several different estimation

problems were investigated.

(a) We seek to estimate r with k - k, g/ - g1-9 given (start-up value: r- 2.5).

-NWe denote by r the "converged" values for r corresponding to a fixed value

*N of the approximation index.

N r

2 2.429

4 2.412

8 1.908

16 2.003

32 2.002

(b) We estimate r, g/£ with k - k given (start-up values: r - 2.2, (g/i) 0
-16 -16 -9.4

8.6). For N - 16, we obtained r 1 2.002, gi/ 1 6. 9.84.

(c) We estimate r, k with g/1 - g/- given (start-up values: r°  2.5, k°  8.0).

-167-16
For N - 16, we obtained r - 1.999, k 3.977.
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Example 4.2.

The nonlinear nonautonomous multiple delay equation for consideration is

3x(t - r2)

kt) --tx(t) + 2x(t - r ) + K - r 2)-0 < t < 4
1) + K + (t - r2)

- me, 2< 0 < 0 ,

20 + me - 4 < 0 - 2.

"Data" were generated for 16 sampling times in [0, 4] using true values r1 a 1,

r 2 = 2, K -1 0, m = 5. The following problems were studied and results obtained.

0 0(a) We estimate r., r2 with K - K, m = m (start-up values: r1 - .5, r2 - 2.5).

-N -NN rl r2

2 1.055 1.600

4 1.013 1.896

8 1.007 1.943

16 .9995 2.003

32 .9998 2.003

(b) We estimate K for rI - rl, r2  r r2, m - m (start-up value: K° - .05).

-NN K

2 8.345

4 9.706-

8 9.816

16 10.027

32 9.9998

. *. . ;



(c) We estimate m for r, M r1, r 2  r *K K (start-up value: M0  4.0).

-N
N a

2 5.114

4 5.028

8 5.014

16 4.998

32 4.999

(d) We repeat the calculations of (c) except we corrupt the data with random

noise (Gaussian with zero mean and standard deviation a -. 1).

-N
N in

2 5.059

4 4.973

8 4.956

16 4.940

32 4.940

Example 4.3

We consider next the linear multiple delay example

1(t 1 t-r +xt- ,0<t<3

22

"True" values of 8 - 3, r, 1 ,l r 2  2, a --. 75 were used to produce 24 data

points on the interval (0, 3].
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(a) We estimate ai for 8 r , r1, r 2  r r2, (start-up value: ai 5.0).

N -N
N ai

2 -.661

4 -.724

8 -.742

16 -.748

32 -.749

(b) We estimate r1, r, 8 with ai a (start-up values: r - 1.3, r 1.7,

0
a M 3.5).

-N -N
N r1  28

2 1.1233 1.600 3.1642

4 1.0028 1.957 3.0323

8 .9993 2.009 3.0064

16 .9996 2.005 3.0007

32 .9998 2.002 3.0000

(c) We repeat the calculations of (b) with data that has been corrupted by

noise.

-N -N -
N r1  r2  8

2 1.096 1.600 3.152

4 .9998 1.970 3.023

8 .9940 2.024 2.994

16 .9934 2.025 2.987

32 .9941 2.023 2.987
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Example 4.4.

As our final example, we present a multiple delay equation with nonlinearity

satisfying only a local Lipschitz condition.

x(t) = - 1.5 x(t) - 1.25 x(t - r1) + cx(t - r 2) sin x(t - r 2 ), 0 < t < 5,

x(8) = i00 + 1, E < 0.

True values were c = 1, r1 
= 1, r2 = 2, and data were generated corresponding

to 20 sampling times in [0, 5J. We estimated r, r2, c with start-up values of

r 0 1.4, r2  2.2, c 0 .2.

-N -Nrl r2 _
N r1  r2  ___

2 1.0814 1.9863 1.0606

4 1.0537 1.9900 .9757

8 .9998 1.9906 .9745

16 .9992 1.9993 .9981

32 .9996 1.9995 .9986

Ii

......... !
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55 Appendix

standard norm on Rn , L (- r, 0), or more generally L2(a ,

2 2

or on Z Rn x L2(- r, 0)

2A

standard norm on L2(- r , 0)

I" q P(q) weighted norm on Z

qn

",q standard norm on X(q) R 2 r , 0)

H" ppq  p(q) weighted norm on X(q)

uN p(q ) weighted norm on either L (- r N 0) or X(q )
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